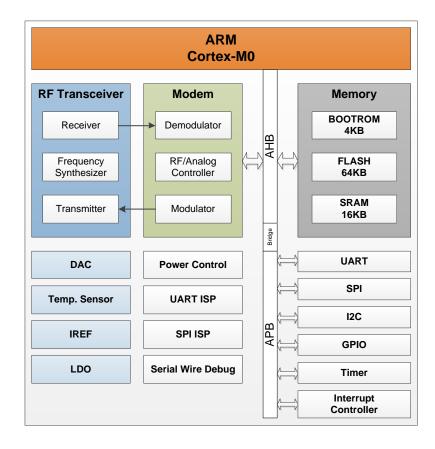


PR9200 UHF RFID Reader System-On-Chip

Applications


- Embedded RFID reader (Mobile phone)
- Handheld RFID reader
- Fixed RFID reader

General Description

The PR9200 is a true single SOC solution for UHF RFID reader which integrates high performance UHF RF, baseband MODEM, ARM Cortex[™]-M0 Processor, memory(64KB FLASH & 16KB SRAM) and many other features with fully compliant ISO 18000-6C/EPC Global Gen II reader protocol software into single die. PR9200 also reduce size, cost and power consumption of RFID reader, which opens up mass market in various applications from mobile handset to fixed reader for large-scale deployment in warehouse.

Key Features

- UHF RFID Transceiver
- CMOS Process with Embedded Flash
- Direct conversion architecture with no external channel filter
- Frequency range : 840MHz 960MHz
- Power consumption : 170mA @ +20dBm
- 3.3V single supply operation [2.6V 3.6V]
- Cortex-M0 processor
- 64 KB embedded flash memory
- 16 KB on-chip SRAM
- 16 general purpose input/output ports
- ISO 18000-6C/EPC Gen II support
- Decoding : FM0, Miller 2/4/8
- Data rate : 40k,80k,160k,320k,640k
- Fully interoperable in different global regulatory environments such as US, EU, KOREA etc
- 64-pin 6mm x 6mm FBGA package

Contents1Revision History32Electrical Characteristics42.1Absolute Maximum Ratings42.2Recommended Operating Conditions42.3Current Consumption (TBD)42.4Radio Receiver Specifications (TBD)52.5Radio Transmitter Specifications (TBD)52.6Radio Frequency Synthesizer Specifications (TBD)63Pin Description7

2.6	Radio Frequency Synthesizer Specifications (TBD)	6
3	Pin Description	
4	Functional Block Description	
4.1	MCU	11
4.2	MODEM	13
4.3	RF	16
5	SYSTEM CONTROL	18
5.1	Operation mode control	
5.2	Power up timing	20
5.3	ISP mode control	21
6	Software	
7	Application Schematic	24
7.1	Antenna configuration	
7.2	Power supply	
7.3	Internal LDOs	
7.4	Rx input matching circuit	
7.5	Tx output matching circuit	27
7.6	Oscillator	
8	Package Information	
9	Address Information	29

1 Revision History

Version	Date	Description
LD01	2012.7.12	preliminary
LD012	2012.7.16	Fixed pin description LP mode -> Internal PA mode , HP mode -> External PA mode
LD013	2015.3.6	Fixed typo error

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit
Storage temperature	Ts	-55	-	+125	°C
Junction temperature	TJ			+125	°C
Supply voltage	VCC	-0.3		+5.5	V
Electrostatic discharge rating					
HB	M V _{HBM}		2000		V

2.2 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	
Ambient operating temperature		T _A	-40	-	+85	°C
Supply voltage		VCC	2.6	3.3	3.6	V
Rise/fall time of all digital inputs	tin	10	-	20	ns	
Digital input high (I/Os referring	to VCC)	VIH	0.2VCC +1.0	VCC	VCC+0.5	V
Digital input low (I/Os referring	to VCC)	VIL	-0.5	0	0.2VCC -0.1	V
Digital output high (I/Os referring	to VCC)	VOH	0.7VCC	-	VCC	V
Digital output low (I/Os referring	to VCC)	VOL	0	-	0.3VCC	V

2.3 Current Consumption (TBD)

Parameter	Symbol	Min	Тур	Max	Unit
POWER DOWN ¹⁾	IPD			1	uA
POWER ON DEEPSLEEP mode ²⁾ SLEEP mode ³⁾ TAG READ (External PA mode) ⁴⁾ TAG READ (Internal PA mode) ⁵⁾	Ideepsleep Isleep I _{act.epa} I _{act.ipa}		200 14 80 170		uA mA mA mA

Note:

1) POWER DOWN mode : CSE is logic low.

2) SLEEP mode : RF is off, MODEM is off, MCU is sleep mode.

3) DEEPSLEEP mode : RF is off, MODEM is off, MCU is sleepdeep mode (clock buffer is off), required external wakeup interrupt

4) TAG READ (External PA mode): Low power mode that TX_LOUT is used ; Output power is about 0 dBm, required External PA

5) TAG READ (Internal PA mode): High power mode that TX_HOUTP & TX_HOUTN is used ; Output power is 20dBm

2.4 Radio Receiver Specifications (TBD)

Parameter	Symbol	Min	Тур	Max	Unit
Input P1dB					
without self-jammer ¹⁾	P _{1dB}	-24		-13	dBm
with self-jammer ²⁾	Pself-jammer	-4		2	dBm
Full path gain		19		98	dB
Gain control range	-		79		dB
Channel filter bandwidth	-	75		1030	kHz
Receiver sensitivity					
without self-jammer ³⁾ with self-jammer ⁴⁾	Psen		-85 -60		dBm dBm

Note

1) Signal sweep

2) Fixed signal, self-jammer sweep

3) M2, LF = 40 kHz, 1% PER

4) Self-jammer = -10dBm, M2, LF = 40 kHz, 1% PER

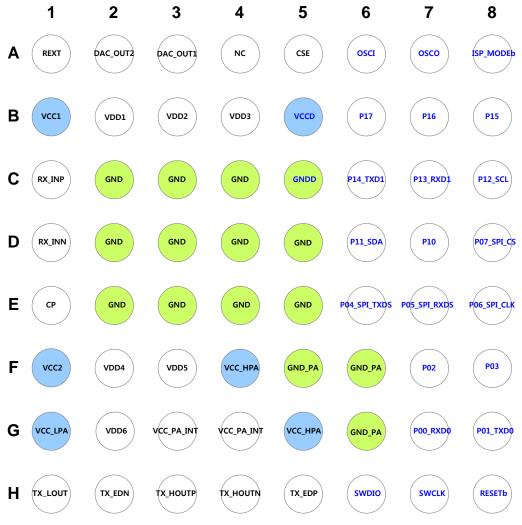
2.5 Radio Transmitter Specifications (TBD)

Parameter	Symbol	Min	Тур	Max	Unit
Nominal output power	Роит			20	dBm
Programmable output power range				10	dB
Output power control step		0.1			dB
Harmonics ¹ 2 nd -order harmonics 3 rd -order harmonics	Pharmics		-26 -30		dBm dBm
Spurious emission ² Below 1GHz Above 1GHz			-43 -26		dBm dBm
Spectrum mask ³ +/-1CH +/-2CH +/-3CH +/-4CH			-28 -63 -69 -70		dBc dBc dBc dBc dBc

Note:

1) measured without RF filter, Tx 20dBm

2) measured without RF filter, Tx 20dBm


Below 1GHz : RBW 100kHz , Above 1GHz : RBW 1MHz

3) Random signal, RBW = 3KHz

2.6 Radio Frequency Synthesizer Specifications (TBD)

Parameter	Symbol	Min	Тур	Max	Unit
Reference frequency	f _{REF}		19.2		MHz
LO frequency range	f_{LO}	840		960	MHz
VCO gain	-		18		MHz/V
LO phase noise @10kHz @100kHz @300kHz @1MHz	P _{NLO}		-77 -102.8 -117.6 -128.6		dBc/Hz

3 Pin Description

Ball No.	Pin Name	I/O	Description					
A1	REXT	Al	External Bias Resis			current		
			24KΩ ±1%	•				
A2	DAC_OUT2	AO	General Purpose D					
A3	DAC_OUT1	AO	General Purpose D	AC output 1				
A4	NC	-	No connect					
A5	CSE	DI	Chip Select enable		enable			
A6	OSCI	DI	TCXO input (19.2M					
A7		DO	Buffered TCXO out					
A8	ISP_MODEb	DI	When ISP_MODE					9
			THORE	A8	B6	B7	B8	
			TMODE	ISP_MODEb		P16	P15	
			Normal	1		GPIO/INT	GPIO/INT	
			FLASH UART ISP	0	0	0	0	
			FLASH SPI ISP	0	0	0	1	
	1/00/		5510					
B1 B2	VCC1 VDD1	P	RF IO power					
B2 B3	VDD1 VDD2	AO AO	RF LDO1 output RF LDO2 output					
В3 В4	VDD2 VDD3	AO	Digital LDO output					
B4 B5	VCCD	P	Digital IO power					
B6	P17	DB	GPIO / Interrupt					
B7	P16	DB	GPIO / Interrupt					
B8	P15	DB	GPIO / Interrupt					
C1	RX_INP	AI	Rx input positive					
C2	GND	Р	RF ground					
C3	GND	Р	RF ground					
C4	GND	Р	RF ground					
C5	GNDD	Р	Digital ground					
C6	P14_TXD1	DB	GPIO / UART1 TXI	2				
C7	P13_RXD1	DB	GPIO / UART1 RX	D				
C8	P12_SCL	DB	GPIO / I2C SCL					
D1	RX_INN	AI	Rx input negative					
D2	GND	Р	RF ground					
D3	GND	Р	RF ground					
D4	GND	Р	RF ground					
D5	GND	Р	RF ground					
D6	P11_SDA	DB	GPIO / I2C SDA					
D7	P10	DB	GPIO / Interrupt					
D8	P07_SPI_CS	DB	GPIO / SPI CS					
E1	CP	AI	PLL charge pump					
E2	GND	P	RF ground					
E3	GND	P	RF ground					
E4	GND	P	RF ground					
E5	GND	P	RF ground					
E5 E6	P04_SPI_TXDS	DB	GPIO / SPI TXD					
E0 E7	P04_SPI_TXDS	DB	GPIO / SPI TXD					
-								
E8	P06_SPI_CLK	DB	GPIO / SPI_CLK					
F1	VCC2	P	RF IO power					
F2	VDD4	AO	RF LDO output					
F3	VDD5	AO	RF LDO output					
F4	VCC_HPA	P	PA power					
F5	GND_PA	Р	PA ground					

F6	GND_PA	Р	PA ground
F7	P02	DB	GPIO / Interrupt
F8	P03	DB	GPIO / Interrupt
G1	VCC_LPA	Р	Driver amp power
G2	VDD6	AO	RF LDO output
G3	VCC_PA_INT	AI	PA internal power
G4	VCC_PA_INT	AI	PA internal power
G5	VCC_HPA	Р	PA power
G6	GND_PA	Р	PA ground
G7	P00_RXD0	DB	GPIO / UART0 RXD
G8	P01_TXD0	DB	GPIO / UART0 TXD
H1	TX_LOUT	AO	TX driver amp output as external PA input
H2	TX_EDN	AI	TX Envelope detector input (negative)
H3	TX_HOUTP	AO	TX PA output positive
H4	TX_HOUTN	AO	TX PA output negative
H5	TX_EDP	AI	TX Envelope detector input (positive)
H6	SWDIO	DB	Serial Wire Debug data inout
H7	SWCLK	DI	Serial Wire Debug CLK
H8	RESETb	DI	Reset signal 0: reset

Table 1 Pin description

Note1. I/O description P: Power (VCC, GND) AI: Analog Input AO: Analog Output DI: Digital Input DO: Digital Output DB: Digital Bi-directional

4 Functional Block Description

The main functional blocks of PR9200 are categorized into: RF, MODEM and MCU as shown in the Figure 2 below. From the protocol point of view, Modem and RF are the parts of physical layer and firmware running on MCU is upper layer. Protocol stacks in upper layer is implemented with Cortex-M0 C language code. The interface between the physical layer and upper layer is formed of EMI (External Memory Interface). Thus, firmware can access lower layer by reading from and writing to EMI memory. From the electrical point of view, RF block is analog block. Otherwise, Modem and MCU block is digital block. Analog and digital block is separated electrically in PR9200. The supplied power from outside of PR9200 should be also separated carefully. Digital signal could be coupled to analog signal and that may depredate system performance. The isolation between digital signal and analog signal is very important. MCU has additional peripherals like WDT, timer, UART, SPI, I2C and so on.

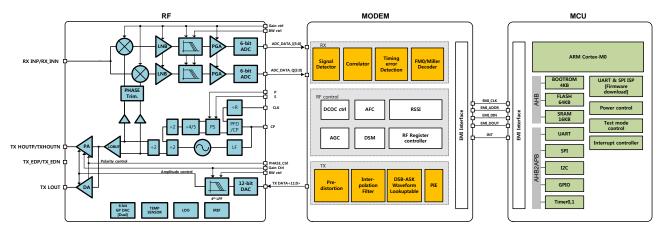


Figure 2 PR9200 Block diagram

4.1 MCU

PR9200 includes ARM Cortex-M0 based, low cost 32-bit MCU, low power, simple instruction set and memory addressing together with reduced code size compared to existing 8bit architectures. PR9200 operate 19.2MHz main clock. Also it includes 64KB embedded flash memory, 16kB DATA SRAM, 4KB Boot ROM, two UART, fast I2C, SSP, GPIO, two dual input timers, WDT, software debugging interface.

4.1.1 Memory Organization

PR9200 incorporates several distinct memory regions, as shown below figures.

Figure 3 shows the overall map of PR9200.

RF transceiver and MODEM control register are mapped onto region of peripheral with MCU serial interface, timer and GPIO. Peripheral region has the address from 0x4000_0000 to 0x5001_0000.

CODE region has different address according to ISP (In-System Programming) mode control. In ISP mode, BROM (Boot ROM) has address 0x0000. After flash programming, EFLASH (embedded flash) area has address 0x000.

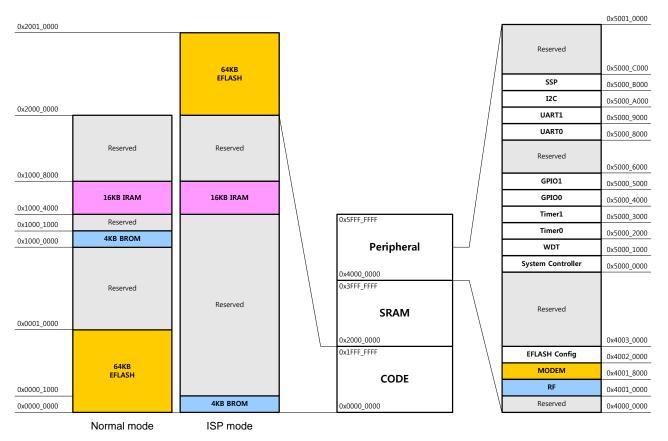


Figure 3 PR9200 Address map

4.1.2 UART

2 UARTs(UART0,UART1) are integrated for PR9200. UART0 & UART1 supports RX/TX IO pins. PR9200 UART includes a programmable baud rate generator that generates a common transmit and receive internal clock from UART internal reference clock.

PR9200 UART has the following features:

- Programmable use of UART input/output.
- Separate 16x8 and 16x12 receive First-In, First-Out memory buffers(FIFOs)
- Fully-programmable serial interface : data(5,6,7,or 8), parity(even,odd,stick,none), stop bit(1 or 2)
- Programmable baud rate generator
- Supports baud rates for up to 460,800 bits/s

4.1.3 SSP

PR9200 SSP is a master or slave interface for SPI synchronous serial communication with peripheral devices It performs serial-to-parallel conversion on data received from a peripheral device.

- PR9200 SSP has the following features:
 - Master / slave operation
 - Programmable clock bit rate
 - Programmable choice of LSB first or MSB first data frame
 - Programmable data frame size from 4 to 16 bits
 - Independent masking of transmit FIFO, receive FIFO
 - Master mode 9.6MHz (Max)
 - Slave mode 3MHz (Max)

4.1.4 I2C

I2C is a multi-master I2C bus module. Only two lines are required; data (SDA) and clock (SCL) PR9200 I2C has the following features:

- Serial, 8-bit oriented, bi-directional data transfers
- Up to 100kbit/s in the standard mode
- Up to 300kbit/s in the Fast mode
- Multi-master I2C-bus including collision detection and arbiration

4.1.5 WDT

PR9200 WDT(Watch Dog Timer) module is based around a 32-bit down counter that is initialized from Reload register. WDT is intended to be used to apply a reset to a system in the event of a software failure, providing a way of recovering from software crashes.

4.1.6 Timer

Dual input timer (timer0, timer1) module consists of two programmable 32/16-bit down counters that can generate interrupts on reaching zero. It has three timer modes: free-running, periodic, one-shot.

4.1.7 GPIO

PR9200 GPIO provides programmable general purpose inputs or outputs. GPIO offers individually programmable input/output pins, default to input at reset. Each GPIO pins has alternative functions. Refer to below Table 2

GPIO module	Pin name	GPIO function	Normal alternative
GPIO0	P00_RXD0	GPIO0[0]	UART0 RXD0
	P01_TXD0	GPIO0[1]	UART0 TXD0
	P02	GPIO0[2] (external interrupt0)	
	P03	GPIO0[3] (external interrupt1)	
	P04_SPI_TXDS	GPIO0[4]	SPI TXDS
	P05_SPI_RXDS	GPIO0[5]	SPI RXDS
	P06_SPI_CLK	GPIO0[6]	SPI CLK
	P07_SPI_CS	GPIO0[7]	SPI CS
GPIO1	P10	GPIO1[0](external interrupt2)	
	P11_SDA	GPIO1[1]	I2C SDA
	P12_SCL	GPIO1[2]	I2C_SCL
	P13_RXD1	GPIO1[3] (external interrupt3)	UART1 RXD1
	P14_TXD1	GPIO1[4]	UART1 TXD1
	P15	GPIO1[5]	
	P16	GPIO1[6](external interrupt4)	
	P17	GPIO1[7](external interrupt5)	

Table 2 GPIO alternative function

4.2 MODEM

The baseband Modem is interfacing between RF and MCU. The Modem can be categorized into 5 blocks as shown below in Figure 4. MODEM TX block transmit modulated data to RF. MODEM RX block receive tag data from RF. RX & TX FIFO is used to store valid data between MODEM to RF.

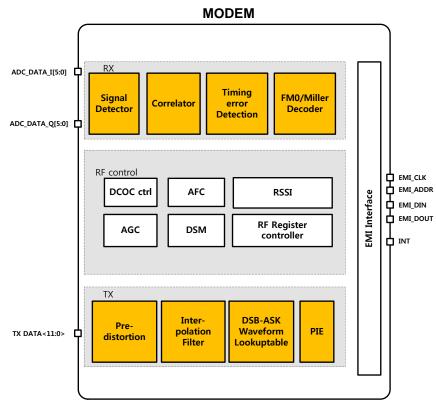


Figure 4 PR9200 MODEM block diagram

4.2.1 Block Overview

4.2.1.1 Interface

PR9200 MCU (cortex-M0) can control to MODEM using EMI interface (External Memory Interface). MODEM sends MCU interrupt which show important message about MODEM operation.

4.2.1.2 Tx/Rx

PR9200 RFID support EPC Global Gen2. Transmit part of MODEM consist of PIE encoder and LUT (Look-Up table) for ASK modulation. PR9200 MODEM generates waveform of tx data using Lookup table, supporting adjustable data shape to eliminate unexpected distortion. Additionally, MODEM TX includes interpolation filter and pre-distortion table.

Rx MODEM is composed with signal detector, correlator, timing error detection and FM0/Miller decoder. Signal detector detects the valid tag signal from RF MODEM input. After signal detection, FM0/Miller encoded data is decoded by correlation. Timing error detection improves decoding performance by compensating timing error between successive data symbols.

4.2.1.3 RF control

PR9200 support register map for RF setting and control through EMI interface. Also supports RF control block to improve RF performance: DCOC (DC offset control), AGC(Automatic Gain control), AFC(Automatic frequency control), and DSM.

4.2.1.4 MISC

PR9200 includes Auto response block in order to automatically process EPC Global Gen2 protocol. Additionally, includes RSSI to support LBT(listen before talk) as well as measure general Rx signal power measurement.

4.2.2 RX Modulator state machine

PHYCHIPS

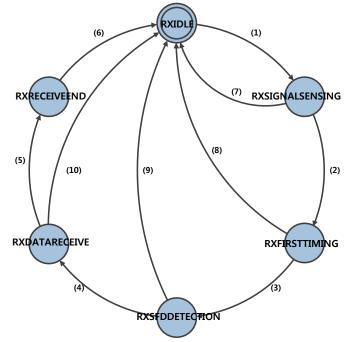


Figure 5 Rx Finite state machine diagram

Та	ble	3
		•

	from	to	conditions
(1)	RXIDLE	RXSIGNALSENSING	rx_enable
(2)	RXSIGNALSENSING	RXFIRSTTIMING	rx_enable & rx_signal_detected_done
(3)	RXFIRSTTIMING	RXSFDDETECTION	rx_enable & next_first_timing_est_done
(4)	RXSFDDETECTION	RXDATARECEIVE	rx_enable & next_preamble_det
(5)	RXDATARECEIVE	RXRECEIVEEND	rx_enable & next_receive_complete
(6)	RXRECEIVEEND	RXIDLE	!rx_enable
(7)	RXSIGNALSENSING	RXIDLE	!rx_enable
(8)	RXFIRSTTIMING	RXIDLE	!rx_enable
(9)	RXSFDDETECTION	RXIDLE	!rx_enable
(10)	RXDATARECEIVE	RXIDLE	!rx_enable

4.2.2.1 RXIDLE state

When rx_enable(modem internal signal) is low, PR9200 enter receive ready or receive stop state. Also all variable of digital modulator are initialized.

4.2.2.2 RXSIGNALSENSING state

In RXSIGNALSENSING state, PR9200 wait Tag signal and determine whether input signal is valid signal or noise.

4.2.2.3 RXFIRSTTIMING state

In RXFIRSTTIMING state, PR9200 take correlation about 1-LF period pulse signal and determine first framesync.

4.2.2.4 RXSFDDETECTION state

PR9200 look for Predefined pattern in preamble called SFD (start Frame Detect) in RXSFDDETECTION state. If modulation method is FM0, expected pattern is "1010v1". otherwise if modulation method is Miller, PR9200 extract "0101111".

4.2.2.5 RXDATARECEIVE state

In RXDATARECEIVE state, PR9200 demodulate a series of received data until the end of signal.

4.2.2.6 RXRECEIVEEND state

RXRECEIVEEND state represents end of data receiving. PR9200 wait at this state until rx_enable is asserted "0".

4.2.2.7 State flow

Figure 6 state flow shows RX Modulator state flow from signal sensing to receive end.

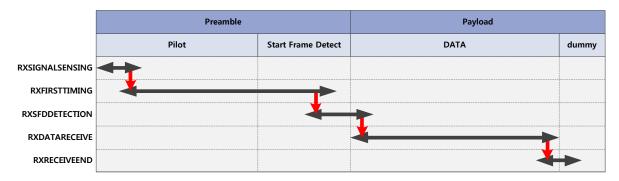


Figure 6 state flow

4.3 RF

The RF block can be categorized into 3 blocks – RX path, TX path, and Frequency Synthesizer. The RF block of RFID reader and the block diagram is shown in Figure 7. Backscattered signal from RFID tags is passed through RX path and transferred to baseband Modem. Modem transfers modulated signal to RFID Tags through TX path. Frequency Synthesizer generates a single frequency tone which is used for converting frequency of signal from baseband to RF or vice versa.

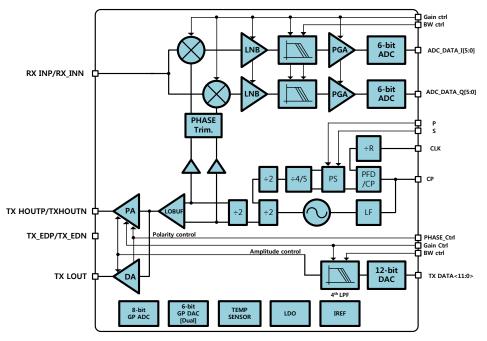


Figure 7 PR9200 RF block diagram

4.3.1 Receiver path

Receiver path consists of down conversion mixer, DC offset corrector, low pass filter (LPF), programmable gain amplifier (PGA) and analog-to-digital converter (ADC). The differential RF signal is down converted to a baseband signal by a mixer. DC offset is corrected by DC offset cancellation circuit. Channel selectivity is performed using an integrated low pass filter. Its tunable bandwidth is determined by RF register values. A programmable gain amplifier provides sufficient gain to demodulate received signal. Its programmable gain is determined by RF register values. The succeeding analog-to-digital converter generates a digital baseband signal. The digital baseband signal feeds Modem to process in digital domain.

4.3.2 Transmitter path

Transmitter path consists of power amplifier (PA), low pass filter (LPF), and digital-to-analog converter (DAC). The ASK modulation signal is converted from digital domain to analog domain by digital-to-analog converter. The succeeding low pass filter suppresses un-wanted harmonics. Its tunable bandwidth is determined by RF register values. PR9200 has polar TX structure that High efficiency PA directly modulates LPF output to UHF RF without up-converting mixer. PA with linear envelope detector satisfies both high efficiency and RFID spectrum using a feedback linearization methodology. PR9200 internal PA has +20dBm output through TX_HOUTP & TX_HOUTN. External PA with over +20dBm can be used with TX LOUT pin instead of internal PA. Also TX_EDP & TX_EDN pin support external PA for feedback linearization.

4.3.3 Frequency Synthesizer

All the blocks except the passive component that forms loop filter are being integrated onto frequency synthesizer which is implemented in $\Delta\Sigma$ fractional-N architecture. LC VCO generates signal ranged from 3.2GHz to 4GHz and these signals go through divide by 4 block then feed local oscillator signal into RF I/Q up/down-converter. Frequency synthesizer also oscillates crystal unit or buffers crystal oscillator output so that system clock of 19.2 MHz is transferred to Modem.

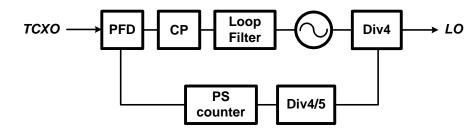


Figure 8 Frequency synthesizer

Local oscillator frequency can be calculated by below equation.

$$F_{LO} = F_{TCXO} \times (4 \times P + S + F/K)$$

- P : P counter value (RF register REG25, REG26)
 - S : S counter value (RF register REG27)
- F : Fractional-N F value (RF register REG76-REG78)
- K : Fractional-N K value (RF register REG79-REG81)

5 SYSTEM CONTROL

5.1 Operation mode control

PR9200 is configured in 5 main modes of operation. This section describes these modes.

POWER DOWN

In POWER DOWN mode, PR9200 is disabled with minimal current consumption. Internal LDO of All Block (RF, MODEM, MCU) is OFF. When CSE pin is "Low", PR9200 enter POWER DOWN mode.

IDLE

All block of PR9200 are initialized when it enters the IDLE mode. After MCU is initialized, MODEM and RF part are initialized by instruction of firmware.

Also RF goes through variable calibration: AFC (Automatic Frequency calibration), Channel setting, AFT (Automatic Filter tuning). Completing initialization, some parts of PR9200 are disabled in order to reduce power consumption.

SLEEP

In SLEEP mode, All block is disabled except for some MCU part that wait interrupt. Pre-define internal interrupt and external interrupt can wakeup the processor. It makes PR9200 enter IDLE state.

DEEPSLEEP

In DEEPSLEEP mode, idle current is minimized as clock buffer is off. Only external interrupt can wakeup PR9200. In order to get out DEEPSLEEP state, additional time is needed to stabilize clock buffer. This is why wakeup time from DEEPSLEEP state to STANDBY state is longer than SLEEP wakeup time.

ACTIVE

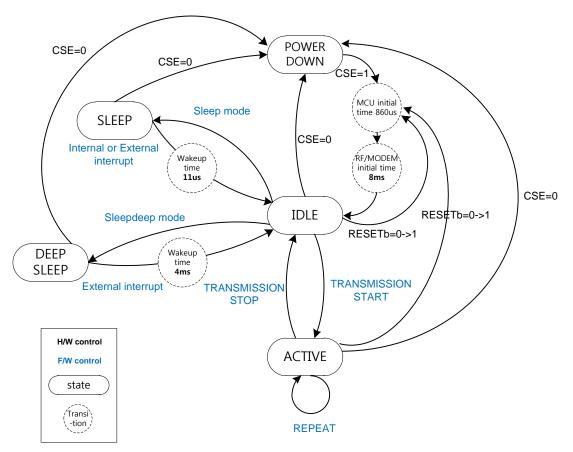
In ACTIVE mode, RF and MODEM is activated before RFID ACTIVE. At ACTIVE state, it is performed that all function defined by RFID standard: reading, writing and so on.

The following table describes block condition according to each operation state.

State name		Condition			Function			
	H/W set	RF	MODEM	MCU				
POWER DOWN	CSE=0	OFF	OFF	OFF	Chip power off			
SLEEP	CSE=1	OFF	ON	Sleep	Sleep mode,			
					Wake-up internal/external			
					interrupt.			
DEEPSLEEP	CSE=1	OFF	OFF	SleepDeep	Low power			
					Wake-up, external interrupt.			
IDLE	CSE=1	OFF	ON	ON	Block initialization			
ACTIVE	CSE=1	ON	ON	ON	Ramp-up			
					Tag reading			
					Ramp-down			

Operation state

Table 4 PR9200 Operation mode


PHÝCHIPS

The state diagram (Figure 9) shows the modes the PR9200 can operate in.

When CSE become high in POWER DOWN mode, PR9200 enter IDLE mode. When the PR9200 enter IDLE mode, MCU is initialized before MODEM and RF is initialized by firmware. RF block is calibrated in order to normal and robust operation. In succession, PR9200 wait command after RF and MODEM block make it idle that some of block power is disabled.

When PR9200 enter ACTIVE mode by RCP command, RF Block is activated and ramp-up the system and it start to read RFID tag. In order to reduce power consumption, PR9200 enter SLEEP state or DEEPSLEEP state by mode control command. External or internal interrupt can wakeup PR9200.

Entering IDLE mode from POWER DOWM mode, initial time is needed. MCU initial time is 860us. MODEM & RF initial time take about 8ms.

5.2 Power up timing

The PR9200 is undefined until POWER (VCC1, VCC2, VCC_HPA) becomes 'high'. When PR9200 power up, CSE pin and RESETb pin is complied with the bellow timing diagram.

Turn on CSE pin and external POWER at the same time. Resetb pin is asserted high after delay, t_{CSE-to-RESETb} in order to robust reset operation.

Although PR9200 restart CSE (1-> 0) In the middle of PR9200 operation: IDLE, SLEEP, DEEPSLEEP, RESETb is asserted high after time delay.

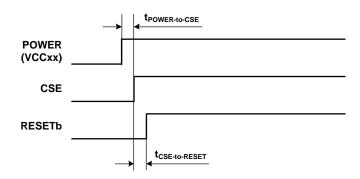


Figure 10 power up timing diagram

Parameter	Symbol	Min	TYP	MAX	Unit
Rising edge of POWER to Rising edge to CSE	tPOWER-toCSE	0			S
Rising edge of CSE to Rising edge to RESETb	t CSEtoRESETb	1.5			ms

Table 5 power up timing parameter

5.3 ISP mode control

PR9200 can download Firmware to internal embedded Flash memory using Serial interface (UART or SPI) without additional H/W. define ISP mode as state which download data to flash memory through serial interface. Also Normal mode is defined as mode which operates MCU according to flash-written Firmware.

PR9200 must be entered the ISP mode in order to download user-defined firmware to flash memory. In order to enter ISP mode, RESETb is activated after ISP_MODEb pin (with P17 and P16) is asserted low.

When P15 pin is asserted low, UART (Specially UART0) is used as programming port. Otherwise P15 pin is asserted high, SPI port is used as programming port. It is necessary that RESETb is asserted whenever mode conversion between ISP and Normal is required. Figure 11 shows that state diagram. Also Figure 12 Timing diagram of ISP mode shows timing diagram of ISP mode and Table 6 Timing parameter of ISP mode control describes timing parameter.

Another way to download firmware is using JTAG port (SWDIO, SWCLK). JTAG mode can operate Normal mode without conversion to ISP mode. F/W download speed of JTAG mode is faster than ISP mode. But JTAG mode need to H/W debugger like ULINK2.

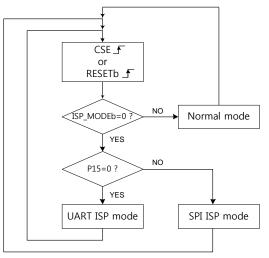
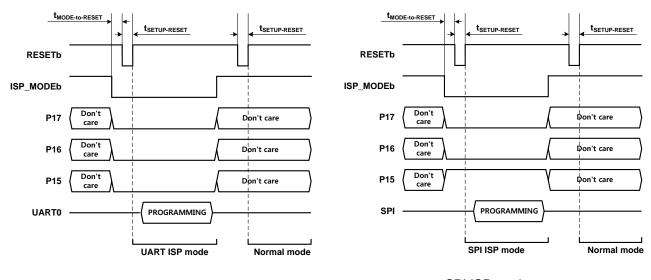



Figure 11 State diagram: ISP mode

UART ISP mode

SPI ISP mode

Parameter	Symbol	Min	TYP	MAX	Unit
Falling edge of ISP_MODEb to RESETb	T _{MODE-to-RESET}	0.45			us
Setup time to RESETb	tsetup-reset	2			us

Table 6 Timing parameter of ISP mode control

The following table describes H/W condition according to mode control

Mode name	H/W control				Programming Port	
woue name	ISP_MODEb	P17	P16	P15	Flogramming For	
ISP UART	0	0	0	0	UART0	
ISP SPI	0	0	0	1	SPI	
JTAG	1	Х	х	х	SWDIO, SWCLK	

Table 7 H/W condition of ISP mode

6 Software

PR9200 is supplied with firmware and evaluation software. RFID Reader Protocol and RFID Air Interface (EPC[™] Gen2) Protocol Stack firmware runs on the internal Cortex-M0 microcontroller. Evaluation software for monitoring and debugging PR9200 runs on PC. Firmware source code is written in C language.

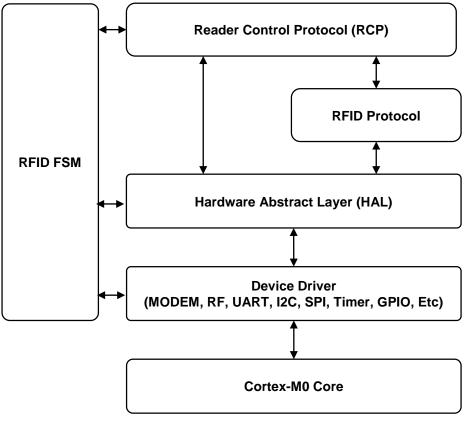


Figure 13 PR9200 SW structure

PHÝCHIPS

7 Application Schematic

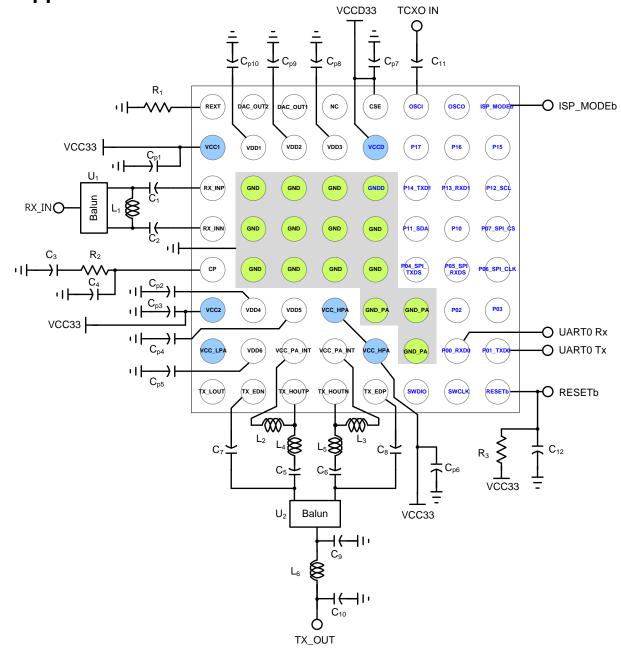


Figure 14 PR9200 Application schematic: Internal PA mode

Component	Function	value	Component	function	Value
R1	Bias reference	24kohm	C5,C6	Tx matching	82pF
C1	Rx matching	15pF	L2,L3	Tx matching	10nH
C2	Rx matching	15pF	L4,L5	Tx matching	4.3nH
L1	Rx matching	9.1nH	C7,C8	Tx matching	6.8pF
R2	Loop filter	5.1kΩ	L6	Tx matching	TBD
C3	Loop filter	2.7nF	C9	Tx matching	TBD
C4	Loop filter	390pF	C10	Tx matching	TBD
U1	Rx 1:1 balun	0900BL15C050	C11	TCXO input	10nF
U2	Tx 1:2 balun	0900BL18B100	Cp1-Cp10	Bypass cap.	1uF
R3	External POR	47kΩ	C12	External POR	47nF

PHÝCHIPS

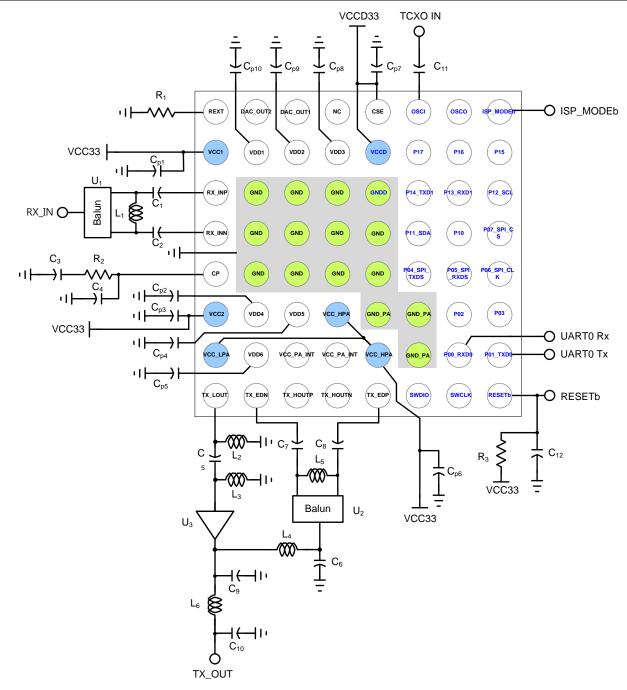


Figure 15 PR9200 Application schematic: External PA mode

Component	Function	value	Component	function	Value
R1	Bias reference	24kohm	C5	Tx matching	8pF
C1	Rx matching	15pF	L2,L3	Tx matching	6.2nH
C2	Rx matching	15pF	L4	Tx matching	2.2nH
L1	Rx matching	9.1nH	C6	Tx matching	1.5pF
R2	Loop filter	5.1kΩ	C7,C8	Tx matching	10pF
C3	Loop filter	2.7nF	L5	Tx matching	5.6nH
C4	Loop filter	390pF	L6	Tx matching	TBD
U1	Rx 1:1 balun	0900BL15C050	C9	Tx matching	TBD
U2	Tx 1:2 balun	0900BL18B100	C10	Tx matching	TBD
U3	External PA	-	C11	TCXO input	10nF
R3	External POR	47 kΩ	Cp1-Cp10	Bypass cap.	1uF
C12	External POR	47nF			

7.1 Antenna configuration

Figure 16 show antenna configuration of PR9200. Directional coupler is used for duplexing Tx-to-Rx signal. Coupling ratio (factor) of directional coupler is related sensitivity of this system. The larger is coupling ratio, The bigger is loss from antenna port to input of chip. Also Isolation of directional coupler is important factor. In RFID system, the Tx-to-Rx isolation is the critical factor for receiving the RFID tag signals. Tx leakage through coupler generates noise at Rx input. This noise makes sensitivity worse. Coupling ratio and isolation of Coupler is a key point of improvement of system sensitivity.

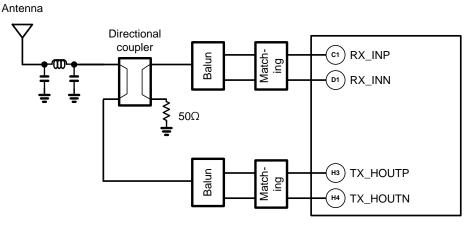


Figure 16 Antenna configuration

7.2 Power supply

VCC1(B1) and VCC2(F1) are positive supply for the analog circuitry. VCCD(B5) is positive supply for digital MODEM and MCU. Also positive supply of Internal PA is VCC_HPAs (F4,G5). Decoupling capacitors should be placed as closed as possible to these pins. In order to any additional parasitic inductance cause by vias, decoupling capacitor should be placed in the sample layer as the chip.

7.3 Internal LDOs

There are 5 internal LDOs in PR9200. VDD1(B2), VDD2(B3), VDD3(B4), VDD4(F2) and VDD5(F3) are output of internal LDOs respectively. Each LDO output requires decoupling capacitor for stable operation. Decoupling capacitor should be placed in the sample layer as the chip.

7.4 Rx input matching circuit

The RF signal received from the antenna transfer differential signal by 1:1 balun. The matching component network consisting of L1,C1 and C2 achieves 50Ω impedance.

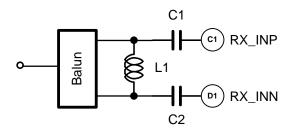
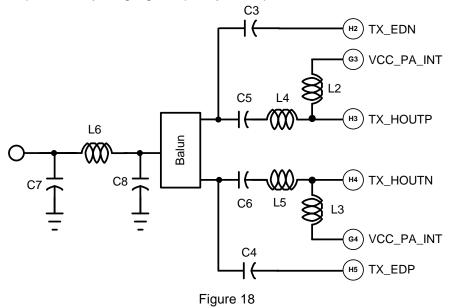



Figure 17 Rx input matching

PHÝCHIPS

7.5 Tx output matching circuit

The differential RF signal output from internal PA transforms single-ended output by 1:2 balun. L2, L3, L4, L5, C5 and C6 are for matching components at Tx signal path. These components are also related in RF power efficiency and maximum power. TX_EDN(H2) and TX_ENP(H5) are input of envelope detector that consist Tx feedback with internal PA. C3 and C4 connect Tx matched output to Tx envelope detector. Harmonic filter(C7,C8,L6) is required for rejecting high frequency Tx output harmonics.

7.6 Oscillator

Main system clock is connected OSCI (A6) through DC blocking capacitor C11.(Figure 19) Main clock frequency is 19.2MHz

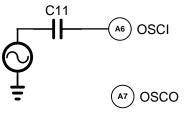


Figure 19

Internal oscillator can be used with crystal unit and load capacitor C9,C10 (Figure 20)

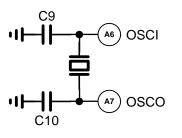
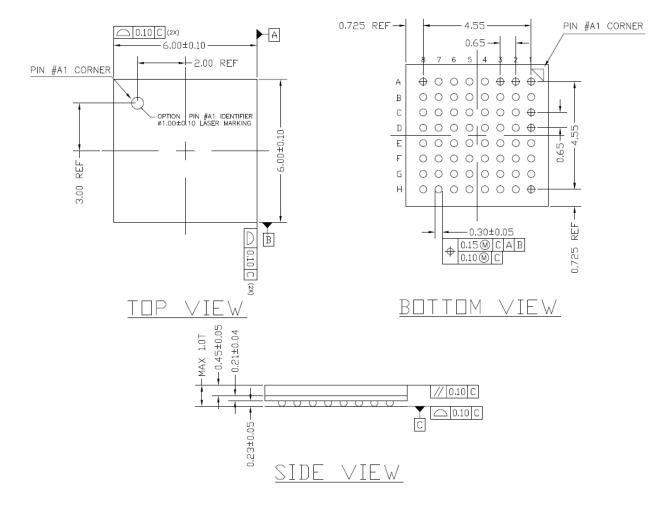



Figure 20

8 Package Information

9 Address Information

PHYCHIPS Inc. #204 Migun Techno World 1, 533 Yongsan-dong, Yuseong-gu, Daejeon, Korea, 305-500 http://www.phychips.com sales@phychips.com Tel: +82-42-864-2402 Fax: +82-42-864-2403

Disclaimer: PHYCHIPS reserves the right to make changes to the information in this document without prior notice. The purchase of PHYCHIPS products does not convey any license under patent rights owned by PHYCHIPS or others. PHYCHIPS does not assume any responsibility for the use of this product. It is the customer's responsibility to make sure that the system complies with regulations.

© 2012 PHYCHIPS Inc. All rights reserved. The reproduction of this document is NOT allowed without approval of PHYCHIPS Inc.